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Cyclic viscoplasticity of solid polymers: The effects of strain rate
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Abstract

Observations are reported on polypropylene random copolymer in uniaxial cyclic tensile tests with various strain rates (ranging from 1.7�
10�4 to 8.3� 10�3 s�1). Each cycle of deformation involves tension up to the maximal strain emax (from 0.05 to 0.20) and retraction down to the
zero stress. The study focuses on deformation programs with 10e50 cycles in each test. A constitutive model is derived for the viscoplastic
behavior of a solid polymer at three-dimensional cyclic deformations with small strains. Material constants in the stressestrain relations are
found by fitting the experimental data. Good agreement is demonstrated between the observations and the results of numerical simulation.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper is concerned with the viscoplastic response of
semicrystalline polymers at cyclic deformations with small
strains. Experimental [1e6] and theoretical [7e20] analysis
of the mechanical behavior of polymers and polymer compos-
ites under cyclic loading has attracted substantial attention in
the past decade. This may be explained by development of
(i) new areas of industrial applications where cyclic deforma-
tions are of primary importance (biomedical devices [5,9]),
and (ii) new experimental techniques for the investigation of
mechanical properties of polymers (nanoindentation [21]).

The objective of this work is twofold: (i) to report observa-
tions in uniaxial cyclic tests on a random copolymer at various
strain rates and maximum strains, and (ii) to derive a constitu-
tive model that correctly describes the experimental data.

A polypropylene random copolymer is chosen for the ex-
perimental investigation because (i) polypropylene and its
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derivatives are widely used in industry, and (ii) necking of ran-
dom copolymers occurs at higher tensile stresses than that of
isotactic polypropylene, which allows cyclic tensile tests to
be performed in a larger interval of strains.

The necessity to develop a novel constitutive model in
cyclic viscoplasticity of solid polymers is explained by the
fact that traditional stressestrain relations fail to describe
the mechanical response after the first cycle of deformation,
see [9,10,13,14,16], to mention a few.

Two starting points in our derivation of a constitutive model
should be mentioned. The first is the concept of pseudo-
elasticity [22]. We borrow from this theory a hypothesis that
some internal parameters in the stressestrain relations may
be treated as piecewise constant functions: their values remain
constant along each loading and retraction path, but are altered
when the strain rate changes its sign. The other starting point
is the assumption [11,12] that the strain-rate tensor for plastic
deformation is proportional to the strain-rate tensor for macro-
deformation (not to the stress tensor as conventional theories
presume).

The exposition is organized as follows. Observations in
cyclic tensile tests are reported in Section 2. Constitutive
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equations for the viscoplastic response of a polymer at three-
dimensional deformations with small strains are developed
in Section 3. Adjustable parameters in the stressestrain rela-
tions are found in Section 4 by fitting the experimental data.
Some concluding remarks are formulated in Section 5.

2. Experimental procedure

Polypropylene random copolymer RF365MO (density
0.905 g/cm3, melt flow rate 20 g/10 min, yield strain 0.11)
was supplied by Borealis A/S (Denmark). Dumbbell speci-
mens for uniaxial tensile tests (ISO standard 527-2) with width
9.85 mm and thickness 3.74 mm were prepared by injection
molding.

Mechanical tests were performed at room temperature by
using a universal testing machine Instron-5568 equipped
with electro-mechanical sensors for the control of longitudinal
strains in the active zone of samples. The tensile force was
measured by a standard load cell. The engineering stress s

was determined as the ratio of the axial force to the cross-
sectional area of specimens in the stress-free state.

Cyclic tensile tests were carried out following a strain-
controlled program. In each test, a specimen was stretched
with a constant strain rate _e up to a maximum strain emax, un-
loaded down to the zero stress with the strain rate �_e, reloaded
up to the maximum strain with the strain rate _e, etc. Each test
consisted of N¼ 10 cycles and was repeated on three different
specimens. To avoid buckling of samples, unloading was per-
formed down to the tensile force 10e15 N (instead of the zero
force).

The experimental program involved two series of tests. In
the first series, testing was carried out with the maximum
strain emax¼ 0.15 and strain rates 1.7� 10�4, 3.3� 10�4,
8.3� 10�4, 1.7� 10�3 and 8.3� 10�3 s�1. In the other series,
tests were performed with the strain rate 1.7� 10�3 s�1 and
maximum strains 0.05, 0.075, 0.10, 0.125, 0.15, 0.175 and
0.20. These values cover the entire range of strains before
necking (necking was observed at the strain e z 0.22).

A strain-controlled deformation program is chosen, since
this program is widely used for the evaluation of mechanical
properties of solid polymers under cyclic loading, see [4e7],
to mention a few. The range of strain rates under consideration
is dictated by the fact that at strain rates exceeding 10�2 s�1,
relatively large fluctuations were observed when the sign of
strain rate was altered by the testing machine.

The stressestrain diagrams (the engineering stress s versus
engineering strain e) are depicted in Fig. 1 for the first series
and in Fig. 2 for the other series of tests. To avoid overlapping
of the experimental data, only observations during the first
cycle (Fig. 1) and the first two cycles (Fig. 2) are reported.
The following conclusions are drawn:

1. The stressestrain diagrams are strongly nonlinear both at
loading and retraction.

2. Along the first loading and retraction paths, the engineer-
ing stress increases with strain rate.
3. An apparent plastic strain (the strain measured at the in-
stant when the engineering stress vanishes at unloading)
is weakly affected by strain rate.

4. The slopes of hysteresis curves strongly decrease, while
the hysteresis areas increase with maximum strain.
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Fig. 1. The engineering stress s versus engineering strain e in cyclic tensile

tests with various strain rates _e s�1. Symbols: experimental data. Solid lines:

results of numerical simulation.
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Fig. 2. The engineering stress s versus engineering strain e in cyclic tensile

tests with various maximum strains (emax¼ 0.05, 0.075, 0.10, 0.125, 0.15,

0.175, 0.20). Symbols: experimental data. Solid lines: results of numerical

simulation.
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3. A constitutive model

A constitutive model is derived for arbitrary three-dimen-
sional deformations with small strains. The study is confined
to cyclic deformations, when the macro-strain tensor beðtÞ
‘‘increases’’ from zero at the initial instant t¼ 0, reaches
its ultimate value bemax, ‘‘decreases’’ down to the zero stress
tensor, ‘‘increases’’ once more up to bemax, and so on.

As the internal structure of a random copolymer is rather
complicated, and its detailed description requires a number
of experimental parameters, we adopt a phenomenological
approach and treat the polymer as an isotropic incompressible
medium. Bearing in mind that polypropylene is only slightly
compressible (its Poisson’s ratio ranges from n¼ 0.43 [23]
to n¼ 0.49 [24]), the effect of compressibility is disregarded.
To simplify the analysis and to reduce the number of material
constants, the viscoelastic effects observed in conventional
creep and relaxation tests are neglected.

The strain tensor for macro-deformation be is split into the
sum of strain tensors for elastic, bee, and viscoplastic, bep,
deformations:

be¼beeþbep; ð1Þ

where bee and bep are assumed to be traceless.
We suppose that the rate-of-strain tensor for viscoplastic

deformation is proportional to the rate-of-strain tensor for
macro-deformation,

dbep

dt
¼ f

dbe
dt
; bepð0Þ ¼ b0; ð2Þ

where t stands for time, and f is a scalar function to be deter-
mined in what follows. The initial condition in Eq. (2) (b0
stands for the zero tensor) expresses the fact that plastic strain
vanishes at the initial instant.

The strain energy (per unit volume) of an isotropic incom-
pressible medium is given by

W ¼ 1

2
mbee :bee; ð3Þ

where m stands for an elastic modulus and colon denotes
convolution of tensors. Differentiating Eq. (3) with respect
to time and using Eqs. (1) and (2), we find that

dW

dt
¼ mð1�fÞbee :

dbe
dt
: ð4Þ

At isothermal deformation of an incompressible medium
with small strains, the ClausiuseDuhem inequality reads

Q¼�dW

dt
þ bs0 : dbe

dt
� 0;

where Q stands for energy dissipation per unit time and unit
volume, bs is the stress tensor, and prime denotes the deviatoric
component of a tensor.

Inserting Eq. (4) into this equality and disregarding dissipa-
tion of energy, we arrive at the stressestrain relation
bsðtÞ ¼ �pðtÞbIþ mð1�fðtÞÞ
�beðtÞ �bepðtÞ

�
; ð5Þ

where p is an unknown pressure and bI stands for the unit
tensor.

With reference to the experimental data reported in Section
2, we distinguish between the first loading (when beðtÞ changes
monotonically from b0 to some ultimate tensor bemax) and subse-
quent retractions and reloadings. At the first loading, the coef-
ficient f in Eq. (2) is treated as a stretched exponential
function of intensity of elastic deformations:

f¼ 1� exp
�
�a Jb

e

�
ð6Þ

Here a and b are positive constants, and

Je ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
bee :be

r
e: ð7Þ

The choice of Eq. (6) is explained by the fact that it in-
volves only two adjustable parameters. Eq. (6) implies that
the rate of viscoplastic strain equals zero at the initial instant,
does not exceed the rate of macro-deformation, and reaches
the strain rate of macro-deformation at relatively large elastic
strains.

Along subsequent paths of retraction and reloading, the
pre-factor f obeys the first-order evolution equation

df

dt
þ b
��_e��f¼ a

m
bs :

dbe
dt
; ð8Þ

where a and b are dimensionless parameters, and j_ej � 0
stands for strain-rate intensity. The initial condition for Eq.
(8) is determined by the continuity condition for the function
f(t). The advantages of Eq. (8) are that it (i) involves only two
parameters, a and b, to be determined by matching observa-
tions and (ii) contains the work of external forces bs : dbe=dt
as an input.

With reference to the concept of pseudo-elasticity [22], we
suppose that a and b remain constant along each path of
a stressestrain diagram at cyclic loading (which means that
a and b are constant at each subsequent retraction and reload-
ing), but their values are altered when the strain rate changes
its sign. To complete description of the model, it is necessary
to define (i) a0

þ, b0
þ for the first retraction path, i.e., at the first

time when be ¼ bemax, (ii) a0
�, b0

� for the first reloading path, i.e.,
at the first time when the stress tensor bs vanishes, and (iii)
a rule that allows a0

þ, b0
þ, a0

� and b0
� to be transformed into

the coefficients in Eq. (8) for any subsequent cycle.
Given bemax and j_ej (that is when the quantities a0

þ, b0
þ and

a0
�, b0

� are fixed), the dependencies of a and b on these param-
eters at each subsequent path of retraction and reloading are
described by the phenomenological relations

a ¼ kþa0
þ; b ¼ kþb0

þ ðretractionÞ; ð9Þ

a¼ k�a0
�; b¼ k�b0

� ðreloadingÞ: ð10Þ

Eqs. (9) and (10) differ from those introduced in our study on
cyclic viscoplasticity of polymer nanocomposites [25].
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The coefficients kþ and k� are treated as functions of incre-
ment of intensity of elastic strain

DJe ¼ Je� J0
e ; ð11Þ

where J0
e stands for intensity of elastic strain at the beginning

of first retraction (reloading), and Je is the current intensity of
elastic strain when the strain rate changes its sign. The follow-
ing equations are proposed for kþ and k�:

kþ ¼ 1�KþDJe; k� ¼ kN
� þ

�
1� kN

�
�

exp
�
� gDJe

�
; ð12Þ

where Kþ, kN
� and g are positive quantities.

An advantage of Eqs. (12) is that they contain only three
parameters, Kþ, kN

� and g. The first equality implies that
aþ ¼ a0

þ and bþ ¼ b0
þ for the first retraction path, and aþ and

bþ decrease linearly with DJe for subsequent retraction paths.
According to the other equality, a� ¼ a0

� and b� ¼ b0
� for the

first reloading path, and a� and b� decrease with DJe exponen-
tially for subsequent reloading paths. When DJe grows infi-
nitely, the last equality in Eqs. (12) implies that a� and
b� tend to kN

� a0
� and kN

� b0
�, respectively.

Eqs. (12) are applicable for low-cycle deformation pro-
grams, when DJe remains small compared with unity. How-
ever, the first equality in Eqs. (12) loses its physical
meaning at high-cycle programs if the coefficient kþ becomes
negative due to growth of DJe. To avoid this inconsistency, we
postulate that Eqs. (12) are satisfied at DJe � DJcr

e only, where
DJcr

e is the critical increment of elastic strain. When DJe ex-
ceeds DJcr

e (high-cycle deformation programs), the coefficients
kþ and k� remain constant.

Given an ultimate strain tensor bemax and a strain-rate inten-
sity j_ej, constitutive equations (1)e(12) involve nine
parameters

m;a;b;a0
þ;b

0
þ;a

0
�;b

0
�;Kþ; k

N
� ;g ð13Þ

for a low-cycle deformation program and 10 adjustable param-
eters (the above quantities and DJcr

e ) for a high-cycle program.
Our aim now is to describe how these parameters are

affected by strain rate and maximum strain per cycle.

3.1. Effect of strain rate

To describe the effect of strain rate on material parameters,
we postulate that the m weakly increases with strain rate
intensity,

m¼ m0þ m1ln
��_e��; ð14Þ

where m0 and m1 are material constants. Eq. (14) is widely used
to account for changes in elastic moduli driven by an increase
in strain rate [26,27]. It should be noted that this formula is
valid in a limited interval of strain rates only, and it cannot
be extrapolated to _e/0.

By analogy with Eq. (14), the following equation is sug-
gested for the influence of strain rate on the dimensionless
parameter a:
a¼ a0� a1ln
��_e��; ð15Þ

where am (m¼ 0, 1) are material constants. The exponent b in
Eq. (6) is independent of strain rate

b¼ b0: ð16Þ
To explain the physical meaning of Eqs. (15) and (16), we

concentrate on uniaxial tensile deformation with Je¼ ee and
re-write Eq. (6) in the form

f¼ 1� exp

�
�
�

ee

e�

�b	
; ð17Þ

where e� ¼ ð1=aÞ1=b may be associated with the yield strain.
At relatively small strain rates, combination of Eqs. (15)e
(17) implies that

e� ¼ eð0Þ� þ eð1Þ� ln
��_e��

with

eð0Þ� ¼
�

1

a0

� 1
b0

; eð1Þ� ¼
a1

a0b
:

Assuming the yield stress s
*

to be proportional to the yield
strain e*, we arrive at the Eyring law

s� ¼ sð0Þ� þ sð1Þ� ln
��_e��;

whose validity has been confirmed by experimental data, see
[28] and the references therein.

Similarly to Eq. (15), we suppose that a0
þ, b0

þ, a0
� and b0

�
decrease linearly with logarithm of strain rate

a0
þ ¼ A0þ �A1þln

��_e ��; b0
þ ¼ B0þ �B1þln

��_e��;
a0
� ¼ A0� �A1�ln

��_e��; b0
� ¼ B0� �B1�ln

��_e��; ð18Þ

where the coefficients Amþ, Am�, Bmþ and Bm� (m¼ 0, 1) are
independent of _e.

The quantities Kþ, kN
� and g in Eqs. (12) are independent of

strain rate.
Given an ultimate strain tensor bemax, the set of material

constants for cyclic deformations with various strain rates
involves 16 parameters

m0;m1;a0;a1;b0;A0þ;A1þ;B0þ;B1þ;A0�;A1�;B0�;B1�;Kþ;k
N
� ;g:

ð19Þ

3.2. Effect of maximum strain

As m, a and b describe the mechanical response at first
loading, they are independent of maximum strain per cycle.
The other parameters are affected by maximum strain intensity
Je reached at the first loading (retraction). The quantities a0

þ,
b0
þ, a0

� and b0
� decrease exponentially with Je,
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ln a0
þ ¼ A0þ �A1þJe; ln b0

þ ¼ B0þ �B1þJe;
ln a0

� ¼ A0� �A1�Je; ln b0
�¼ B0� �B1�Je;

ð20Þ

where Amþ, Ame, Bmþ and Bme (m¼ 0, 1) are constants.
Eqs. (20) are similar to the relations suggested in [29] for
cyclic deformations of particle-reinforced rubbers within the
concept of pseudo-elasticity.

The parameter g in Eq. (12) is not affected by maximum
strain, whereas evolution of Kþ and kN

� with Je is described
by the equations

ln Kþ ¼ K0þ �K1þJe; kN
� ¼ KN

� Je; ð21Þ

where K0þ, K1þ and KN
� are independent of Je.

Given a strain-rate intensity j_ej, the set of material constants
for cyclic deformations with various maximum strains
involves 15 parameters

m;a;b;A0þ;A1þ;B0þ;B1þ;A0�;A1�;B0�;B1�;K0þ;K1þ;K
N
� ;g:

ð22Þ

The number of experimental constants in the model is com-
parable with that in the stressestrain relations proposed by
other researchers (7 in [13,14], 10 in [17], 12 in [15], 12e
15 in [9,10], 15 in [16]). An advantage of the constitutive
equations is that (i) they can describe the mechanical response
in cyclic tests with an arbitrary number of cycles, and (ii) ma-
terial constants can be found one after another in such a way
that no more than three parameters are determined by using
observations along each reloading (retraction) path.

4. Determination of material parameters

Determination of experimental constants provides the main
source of difficulties in application of conventional models in
cyclic viscoplasticity, as a large number of parameters is to be
found simultaneously by matching (relatively small) intervals of
a stressestrain diagram. Our aim now is to demonstrate how ad-
justable parameters in the constitutive equations can be deter-
mined by fitting the experimental data reported in Section 2.

4.1. Uniaxial cyclic tests

First, we simplify the constitutive equations for uniaxial
tension of a specimen, when the strain tensor for macro-
deformation reads

be¼ eðtÞ
�

e15e1�
1

2
ðe25e2þ e35e3Þ

	
: ð23Þ

Here e(t) stands for longitudinal engineering strain, ek (k¼ 1,
2, 3) are unit vectors of a Cartesian frame, whose vector e1 co-
incides with the direction of loading, and 5 denotes tensor
product. Assuming the plastic strain tensor bep to be presented
in the form (23),
bep ¼ epðtÞ e15e1�
1

2
ðe25e2þ e35e3Þ ; ð24Þ

where ep(t) is a function to be found, we substitute Eqs. (23),
(24) and (7) into Eqs. (2) and (6) and find that

dep

de
¼ f; epð0Þ ¼ 0; ð25Þ

where

f¼ 1� exp
h
� a
�
e� ep

�b
i
: ð26Þ

Inserting expressions (23), (24) and (7) into Eq. (5) and exclud-
ing pressure p from the boundary condition on the lateral surface
of a specimen, we calculate the engineering tensile stress s,

s¼ ES; S¼
�
1�f

��
e� ep

�
; ð27Þ

where E ¼ 3=2m stands for an analog of the Young’s modulus.

4.2. Tension of a virgin sample

The quantities E, a and b are determined by matching the first
loading path of a stressestrain curve with the help of the follow-
ing algorithm. We fix some intervals [0, a0] and [0, b0], where
the best-fit parameters a and b are located and divide these inter-
vals by the points ai¼ iDa and bj¼ jDb, where Da¼ a0/J and
Db¼ b0/J (i, j¼ 1,., J� 1). For each pair {ai, bj}, Eqs. (25)
and (26) are integrated numerically (by the RungeeKutta
method with the step De¼ 1.0� 10�5) from e¼ 0 to emax. The
pre-factor E in Eq. (27) is found by the least-squares method
from the condition of minimum of the function

F ¼
X

n

�
sexpðenÞ � snumðenÞ

�2
;

where the sum is calculated over all points en at which obser-
vations are reported, sexp is the stress measured in the test, and
snum is given by Eq. (27). The best-fit values a and b are cho-
sen from the condition of minimum of F on the set of pairs
{ai, bj}.

After finding a and b, the initial intervals [0, a0] and [0, b0]
are replaced with the new intervals ½a� Da;aþ Da� and
½b� Db; bþ Db�, and the calculations are repeated. To ensure
an acceptable quality of fitting observations, this procedure is
repeated three times with J¼ 10.

We begin with matching the experimental data obtained in
the first series of tests (cyclic deformations with the maximal
strain emax¼ 0.15 and various strain rates). The loading path of
each stressestrain diagram is approximated separately
(Fig. 3). For the sake of brevity, we report the experimental
data obtained in a cyclic test with a strain rate of
1.7� 10�3 s�1 only. The quality of fitting observations at cy-
clic deformations with other strain rates is similar. The best-fit
parameters E, a and b are plotted versus strain rate j_ej in Figs.
4 and 5 together with their approximations by Eqs. (14)e(16).
The quantities E0, E1, a0, a1 and b0 are collected in Table 1.
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4.3. First retraction

To find other parameters of the model, we approximate the
first retraction path of each stressestrain curve. Using Eqs.
(23) and (27), we present Eq. (8) in the form

df

de
¼ aSþ bf: ð28Þ

30.0

MPa

0.0
0.0 0.16

Fig. 3. The engineering stress s versus engineering strain e in a cyclic tensile

test with a strain rate of 1.7� 10�3 s�1. Circles: experimental data. Solid line:

results of numerical simulation.

2.0

E

GPa

0.0
–9.0 –4.0

ln s–1

Fig. 4. The elastic modulus E versus strain rate _e. Circles: treatment of obser-

vations in cyclic tensile tests with various strain rates. Solid line: approxima-

tion of the experimental data by Eq. (14).
To find a0
þ and b0

þ, we fix some intervals [0, a0] and [0, b0],
where these quantities are located, and divide these intervals
by the points ai¼ iDa and bj¼ jDb with Da¼ a0/J, Db¼ b0/
J (i, j¼ 1,., J� 1). For any pair {ai, bj}, Eqs. (25), (27)
and (28) are integrated numerically (by the RungeeKutta
method with the step jDej ¼ 1.0� 10�5) from e¼ emax to
s¼ 0. The initial conditions for Eqs. (25) and (28) reflect

250.0

150.0
1.5

1.0
–9.0

ln s–1
–4.0

a
0
+

b
0
+

a
0
+

b
0
+

Fig. 6. Adjustable parameters a0
þ and b0

þ versus strain rate _e. Symbols: treat-

ment of observations in cyclic tensile tests with various strain rates. Solid

lines: approximation of the experimental data by Eq. (18).

15.0

5.0

1.0

0.0
–9.0 –4.0

ln s–1

Fig. 5. Adjustable parameters a and b versus strain rate _e. Symbols: treatment

of observations in cyclic tensile tests with various strain rates. Solid lines:

approximation of the experimental data by Eqs. (15) and (16).
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continuity of the functions ep(e) and f(e). The best-fit param-
eters aþ and bþ are determined from the condition of mini-
mum of F on the set {ai, bj}. Afterwards, the initial
intervals [0, a0] and [0, b0] are replaced with ½aþ � Da; aþ þ
Da� and ½bþ � Db; bþ þ Db�, and the calculations are repeated.
This procedure is repeated three times with J¼ 10.

When the best-fit values of a0
þ and b0

þ are found, these
quantities are plotted versus strain rate j_ej in Fig. 6 together
with their approximations by Eqs. (18), where the coefficients
A0þ, A1þ, B0þ and B1þ are determined by the least-squares
technique. These coefficients are collected in Table 1.

Table 1

Adjustable parameters of the model for cyclic tests with a constant maximum

strain emax¼ 0.15 and various strain rates

Parameter Value

E0 (GPa) 2.41

E1 (GPa) 0.11

a0 10.19

a1 0.35

b 0.78

A0þ 178.03

A1þ 4.48

B0þ 1.24

B1þ 0.01

A0� 238.53

A1� 19.05

B0� 3.84

B1� 0.39

g 40.70

Kþ 7.45

kN
� 0.48

−9.0 −4.0

500.0

a
0
−

b
0
−

a
0
−

b
0
−

4.0

0.0
9.0

ln s–1

Fig. 7. Adjustable parameters a0
� and b0

� versus strain rate _e. Symbols: treat-

ment of observations in cyclic tensile tests with various strain rates. Solid

lines: approximation of the experimental data by Eq. (18).
4.4. Second cycle of deformation

Adjustable parameters a0
�, b0

� and kþ are found by fitting
observations at the second cycle of deformation using the fol-
lowing algorithm. First, we re-write Eq. (8) for reloading in
the form

df

de
¼ aS� bf: ð29Þ

We fix some intervals [0, a0] and [0, b0], where the best-fit
parameters a0

� and b0
� are assumed to be located, and the

interval [0, 1] for the parameter kþ. These intervals are divided
by the points ai¼ iDa, bj¼ jDb and kl¼ lDk with Da¼
a0/J, Db¼ b0/J and Dk¼ 1/J (i, j, l¼ 1,., J� 1). For any
triplet {ai, bj, kl}, the governing equations are integrated
numerically (by the RungeeKutta method with the step
jDej ¼ 1.0� 10�5).

Eqs. (25), (27) and (29) are integrated from s¼ 0 to
e¼ emax with the coefficients a and b equal to ai and bj, respec-
tively. Afterwards, Eqs. (25), (27) and (28) are integrated from
e¼ emax to s¼ 0 with the coefficients a and b equal to aþ ¼
kla

0
þ and bþ ¼ klb

0
þ, where a0

þ and b0
þ are given by Fig. 6.

The best-fit parameters a�, b� and kþ are determined from
the condition of minimum of F on the set {ai, bj, kl}. Then
the initial intervals [0, a0], [0, b0] and [0, 1] are replaced
with the new intervals ½aþ � Da; aþ þ Da�, ½bþ � Db; bþþ
Db�, ½kþ � Dk; kþ þ Dk�, and the calculations are repeated.
This procedure is repeated three times with J¼ 10.

After determination of a0
� and b0

� by fitting the second
cycle of each stressestrain diagram, these quantities are
plotted versus strain rate j_ej in Fig. 7 together with their ap-
proximations by Eqs. (18). The coefficients A0�, A1�, B0�

1.0

0.0
1.0

0.0
0.0 0.04

k+

k+

k−

k−

Δ  
e

Fig. 8. Adjustable parameters kþ and k� versus increment of elastic strain Dee.

Symbols: treatment of observations in a cyclic test with a strain rate of

1.7� 10�3 s�1. Solid lines: approximation of the experimental data by Eqs. (12).
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and B1� are found by the least-squares method and are
collected in Table 1.

4.5. Other cycles of deformation

The other parts of each stressestrain curve are approxi-
mated by using a version of the above algorithm with two
adjustable parameters, k� and kþ. To fit the third cycle of de-
formation, for example, we fix the same intervals [0, 1] for
k� and kþ, and divide them by points ki¼ iDk and kj¼ jDk
(i, j¼ 1,., J� 1) with Dk¼ 1/J. For each pair {ki, kj}, we
integrate Eqs. (25), (27) and (29) from s¼ 0 to e¼ emax, and,
afterwards, Eqs. (25), (27) and (28) from e¼ emax to s¼ 0.
Numerical analysis is performed by the RungeeKutta method
with the step jDej ¼ 1.0� 10�5. The coefficients a and b read
a� ¼ kia

0
�, b� ¼ kib

0
� for Eq. (29), and aþ ¼ kja

0
þ, bþ ¼ kjb

0
þ

for Eq. (28). The best-fit parameters k� and kþ are determined
from the condition of minimum of F on the set of pairs {ki,
kj}. When these quantities are found, the initial intervals are
replaced with ½k� � Dk; k� þ Dk� and ½kþ � Dk; kþ þ Dk�,
and the calculations are repeated. This procedure is repeated
three times with J¼ 10.

The coefficients kþ and k� are plotted versus the increment
of elastic strain Dee [the difference between the current value
of ee and its value e0

e for the first retraction (reloading)] in
Fig. 8. Only the data corresponding to the strain rate
1.7� 10�3 s�1 are reported. These data are approximated by
Eqs. (12), where g is found by the steepest descent method
(in our treatment of measurements in other tests, this quantity
is used without changes). The coefficients Kþ and kN

� in Eqs.
(12) are determined by the least-squares technique. These co-
efficients are independent of strain rate, and their values are
collected in Table 1.

4.6. Tests with various maximum strains

We now approximate the observations in cyclic tests with
a strain rate of 1.7� 10�3 s�1 and various maximum strains
emax. The algorithm of fitting is similar to that applied in
matching observations in tests with various strain rates. The
differences between these procedures consist of the following:
(i) we avoid determination of E, a and b, because these quan-
tities have been found previously, (ii) the dependencies of a0

þ,
b0
þ, a0

� and b0
� on increment of elastic strain Dee are approxi-

mated by Eqs. (20), where the coefficients Amþ, Bmþ, Am� and
Bm� are determined by the least-squares method, (iii) the
dependencies of Kþ and kN

� on increment of elastic strain
Dee are approximated by Eqs. (21). The entire set of material
constants is reported in Table 2.

Figs. 1e3 demonstrate that the stressestrain relations cor-
rectly describe the mechanical response at all strain rates and
maximum strains under consideration. According to Figs. 4e
8, Eqs. (14), (15), (16), (18) and (20) adequately characterize
the effects of strain rate and maximum strain on material
constants.
4.7. Accuracy of determining the material constants

A characteristic feature of cyclic deformations (which
makes their analysis relatively hard) is that ‘‘averaging’’ of
the stressestrain diagrams (measured on different samples)
cannot be performed, which implies that determination of
material constants should be carried out for each set of exper-
imental data independently. This distinguishes treatment of
observations in cyclic tests from that in conventional mono-
tonic tensile tests, where several stressestrain curves obtained
on different specimens can be replaced with one ‘‘average’’
diagram. The averaging procedure becomes questionable
due to the fact that relatively small variations in apparent
residual strains at retraction to the zero stress (inevitable in
experiments) cause large deviations between the stressestrain
curves at reloading.

To assess the level of uncertainty in calculation of material
constants induced by our choice of a particular sample, we ap-
ply the above procedure of matching observations to the ex-
perimental data obtained on three independent specimens in
cyclic tests with a strain rate of 1.7� 10�3 s�1 and a maximum
strain of 0.1. The average values of material constants and
their maximum (not standard) deviations are listed in Table 3
(to simplify the numerical analysis, the same values of E,
a and b are used). Table 3 shows that the accuracy of finding
the adjustable parameters is relatively high: the maximum de-
viations do not exceed 11%. This level of accuracy coincides

Table 2

Adjustable parameters of the model for cyclic tests with a strain rate of

1.7� 10�3 s�1 and various maximum strains emax

Parameter Value

E (GPa) 1.62

a 12.60

b 0.79

A0þ 5.66

A1þ 4.89

B0þ 4.33

B1þ 69.30

A0� 8.24

A1� 45.21

B0� 4.17

B1� 46.47

g 40.70

K0þ 4.10

K1þ 34.32

KN
� 9.47

Table 3

Average values of material parameters and their maximum deviations for a cy-

clic test with a strain rate of 1.7� 10�3 s�1 and a maximum strain of 0.10

Parameter Average value Maximum deviation (%)

a0
þ 226.00 11

b0
þ 3.04 5

a0
� 656.00 6

b0
� 1.06 4

Kþ 12.02 4

kN
� 0.39 6
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with that conventionally accepted for the Young’s modulus of
solid polymers evaluated by standard methods.

4.8. High-cycle deformation programs

Unlike the above analysis focusing on deformation pro-
grams with N¼ 10 cycles, our aim now is to examine the
model predictions when the number of cycles N becomes

0.04 0.11
0.0

25.0
0.0

25.0
0.0

25.0
0.0

25.0
0.0

25.0

N = 10

N = 20

N = 30

N = 40

N = 50

Fig. 9. The engineering stress s versus engineering strain e at the Nth cycle

(N¼ 10, 20, 30, 40, 50). Circles: treatment of observations in a cyclic test

with a strain rate of 1.7� 10�3 s�1 and a maximum strain of emax¼ 0.10. Solid

lines: results of numerical simulation.

0.0 0.07

0.0

1.0

k+

0.0

1.0

k−

k+

k−

Δ  
e

Fig. 10. Adjustable parameters kþ and k� versus increment of elastic strain Dee.

Symbols: treatment of observations in a cyclic test with the maximum strain

emax¼ 0.10. Solid lines: approximation of the experimental data by Eqs. (12).
relatively large. For this purpose, an additional cyclic tensile
test was performed with the strain rate 1.7� 10�3 s�1, the
maximum strain emax¼ 0.1, and the number of cycles
N¼ 50. The material parameters are found following the
above procedure of matching observations. The experimental
stressestrain diagrams for the 10, 20, 30, 40 and 50th cycles
are depicted in Fig. 9 together with the results of numerical
simulation (approximation at N¼ 10, 20, 30, 40 and prediction
for N¼ 50). This figure shows that the constitutive model cor-
rectly fits the observations and adequately predicts the me-
chanical response. According to Fig. 9, the apparent residual
strain at retraction increases, whereas the maximum stress
per cycle decreases with number of cycles. The growth of
the apparent residual strain occurs more pronouncedly (43%)
than the reduction in the maximum stress (9%).

The only difference between the low-cycle and high-cycle
deformation programs is observed in Fig. 10, which demon-
strates that kþ and k� reach their ultimate values kN

þ and kN
�

when the increment of elastic strain Dee exceeds its critical
value Decr

e z0:04.

5. Concluding remarks

Experimental stressestrain diagrams are reported on poly-
propylene random copolymer at uniaxial cyclic tensile defor-
mations with various strain rates and maximum strains (that
cover the entire interval of strains below the necking point).
By using the laws of thermodynamics, constitutive equations
are derived for the viscoplastic response of a solid polymer
at arbitrary three-dimensional deformations with small strains.
Adjustable parameters in the stressestrain relations are found
by fitting the experimental data. It is shown that (i) the model
correctly describes the observations and (ii) the material pa-
rameters change consistently with amplitude and rate of cyclic
deformations.
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